Analisis Peramalan Persediaan Bahan Baku Pada Usaha Tahu Murni Desa Tuhemberua Ulu Kota Gunungsitoli

  • Iman Exaudi Laoli Universitas Nias
  • Sophia Molinda Kakisina Universitas Nias
  • Idarni Harefa Universitas Nias
  • Jeliswan Berkat Iman Jaya Gea Universitas Nias
Keywords: Forecasting, Moving Average, Exponential Smoothing

Author Biographies

Iman Exaudi Laoli, Universitas Nias

Management

Sophia Molinda Kakisina, Universitas Nias

Management

Idarni Harefa, Universitas Nias

Management

Jeliswan Berkat Iman Jaya Gea, Universitas Nias

Management

References

Falatouri, T., Darbanian, F., Brandtner, P., & Udokwu, C. (2022). Predictive Analytics for Demand Forecasting - A Comparison of SARIMA and LSTM in Retail SCM. Procedia Computer Science, 200(2019), 993–1003. https://doi.org/10.1016/j.procs.2022.01.298
Gopalakrishnan, V., Pethe, S., Kefayati, S., Srinivasan, R., Hake, P., Deshpande, A., Liu, X., Hoang, E., Davila, M., Bianco, S., & Kaufman, J. H. (2021). Globally local: Hyper-local modeling for accurate forecast of COVID-19. Epidemics, 37, 100510. https://doi.org/10.1016/j.epidem.2021.100510
Hemalatha, C., Sankaranarayanasamy, K., & Durairaaj, N. (2021). Lean and agile manufacturing for work-in-process (WIP) control. Materials Today: Proceedings, 46, 10334–10338. https://doi.org/10.1016/j.matpr.2020.12.473
Jaidi, N., Siswantoyo, Liu, J., Sholikhah, Z., & Andhini, M. M. (2022). Ambidexterity Behavior of Creative SMEs for Disruptive Flows of Innovation: A Comparative Study of Indonesia and Taiwan. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 141. https://doi.org/10.3390/joitmc8030141
Khare, V., & Jain, A. (2023). Predict the performance of driverless car through the cognitive data analysis and reliability analysis based approach. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 6(November), 100344. https://doi.org/10.1016/j.prime.2023.100344
Khare, V., Jain, A., & Bhuiyan, M. A. (2023). Assessment of hydro energy potential from rain fall data set in India through data analysis. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 6(August), 100290. https://doi.org/10.1016/j.prime.2023.100290
Legaki, N. Z., Karpouzis, K., Assimakopoulos, V., & Hamari, J. (2021). Gamification to avoid cognitive biases: An experiment of gamifying a forecasting course. Technological Forecasting and Social Change, 167, 120725. https://doi.org/10.1016/j.techfore.2021.120725
Lin, W., & Wei, Y. (2024). Economic forecasting with big data: A literature review. Journal of Management Science and Engineering, 9(2), 254–270. https://doi.org/10.1016/j.jmse.2024.01.003
Mizoue, Y., Sencer, B., & Beaucamp, A. (2020). Enhancing tropical cyclone intensity forecasting with explainable deep learning integrating satellite observations and numerical model outputs. International Journal of Machine Tools and Manufacture, 103648. https://doi.org/10.1016/j.isci.2024.109905
Neubauer, L., & Filzmoser, P. (2024). Improving forecasts for heterogeneous time series by “averaging”, with application to food demand forecasts. International Journal of Forecasting, xxxx. https://doi.org/10.1016/j.ijforecast.2024.02.002
Nzengue, A. G. B., Mpofu, K., Mathe, N., Muvunzi, R., & Oyesola, M. (2023). An Integrated Value-Addition in Supply Chain Network for Metal-based Additive Manufacturing. Procedia CIRP, 120, 892–897. https://doi.org/10.1016/j.procir.2023.09.095
Peng, Y., Wang, T., Wang, H., Wang, L., Zhang, H., & Wu, S. (2023). Impact of digital filtering as a weak constraint on 4DVar to predict and perturb typhoons in WRF model. Atmospheric Research, 284(December 2022), 106578. https://doi.org/10.1016/j.atmosres.2022.106578
Rahmawati, A., Wahyuningsih, S. H., & Garad, A. (2023). The effect of financial literacy, training and locus of control on creative economic business performance. Social Sciences and Humanities Open, 8(1), 100721. https://doi.org/10.1016/j.ssaho.2023.100721
Sroginis, A., Fildes, R., & Kourentzes, N. (2023). Use of contextual and model-based information in adjusting promotional forecasts. European Journal of Operational Research, 307(3), 1177–1191. https://doi.org/10.1016/j.ejor.2022.10.005
Syberg, M., West, N., Lenze, D., & Deuse, J. (2023). Framework for predictive sales and demand planning in customer-oriented manufacturing systems using data enrichment and machine learning. Procedia CIRP, 120, 1107–1112. https://doi.org/10.1016/j.procir.2023.09.133
Szalkowski, G. A., & Mikalef, P. (2023). Understanding digital platform evolution using compartmental models. Technological Forecasting and Social Change, 193(December 2022), 122600. https://doi.org/10.1016/j.techfore.2023.122600
Thomakos, D., & Xidonas, P. (2023). The origins of forward-looking decision making: Cybernetics, operational research, and the foundations of forecasting. Decision Analytics Journal, 8(July), 100284. https://doi.org/10.1016/j.dajour.2023.100284
Villarroya, C., Calafate, C. T., Onaindia, E., Cano, J. C., & Martinez, F. J. (2022). Neural Network-based Model for Traffic Prediction in the City of Valencia. Procedia Computer Science, 207(Kes), 552–562. https://doi.org/10.1016/j.procs.2022.09.110
Yusuf, N., Govindan, R., & Al-Ansari, T. (2024). Energy markets restructure beyond 2022 and its implications on Qatar LNG sales strategy: Business forecasting and trend analysis. Heliyon, 10(7), e27682. https://doi.org/10.1016/j.heliyon.2024.e27682
Published
2024-04-30
How to Cite
LaoliI. E., KakisinaS. M., HarefaI., & GeaJ. B. I. J. (2024). Analisis Peramalan Persediaan Bahan Baku Pada Usaha Tahu Murni Desa Tuhemberua Ulu Kota Gunungsitoli. Jurnal Ilmiah Metansi (Manajemen Dan Akuntansi), 7(1), 209-214. https://doi.org/10.57093/metansi.v7i1.269